
MC-step intersection lib for
SPDRoot (cis-mc)

Example of restrictive architecture on the way to
NICARoot

Renat R. Dusaev
Tomsk HEP Group*

Internal SPD collaboration meeting,
25/04/018, Jinr, Dubna, RU

*) Tomsk Polytechnic University, Tomsk State University, Tomsk State Pedagogical
University

Outline

1. The holy cow of choosing the magnetic field
configuration in SPD

2. Monte-Carlo simulations (internals)
3. Straightforward approach
4. Conclusion
5. Suggestions (software)

2

1.1 Physical Programme Selection
Criteria (SPD 02/11/017, 05/02/018, ...)

=> Detector prototyping implies plethora of various spatial/phase-space
parameters & distributions aside from particular detector setup for certain technical
proposals.

• charged meson multiplicity
• charged baryon multiplicity
• neutral mesons’ multiplicity
(besides π 0)
• … (6 more)

• Drell-Yan pair produc on (muon and
electron-positron ones);
• processes with prompt photons in the final state;
• processes with production of large p T mesons
and baryons (semi-
inclusive and inclusive);
• light and heavy vector meson production.

3

=> Albeit being imprecise, the most intuitive and straightforward way to represent
spatial fields is grids

Image Copyright © 2008 - VISGRAF-IMPA

arXiv:1503.07137v1

1.2 Vector Fields Visualization
Techniques

4

1.3 Cylindrical Surface Intersections

=> Unfolding cylindrical surface on plane z/φ
5

2.1 Monte-Carlo Stepping Stage

=> All the information need is already stored within the MC stack

=> We usually do not write everything because of its abundance

(Geant4 Book For Application Developers, rel. 10.4)

6

2.2 Cylindrical Surface Intersection Algo

=> Numerically optimized, tested well on false positives, see scripts at
macro/cis-mc

=> Use no voxelization, precise and cheap

(for reference)

The simple numerical procedure may be derived avoiding encumbering
generic CSG i/section G4 algorithms, writing the parametric equation on the
line segment crossing circle in xy plane.

7

2.3 Extending MC Procedure in Native G4 Terms

=> Interfaces are provided by concrete base classes with dummy implementation.
So far, so clear...

credits: http://slideplayer.com/slide/6374717/

● Every interface in
Geant4 has a
corresponding dedicated
class with clear and fixed
contract.

● Data processing pipeline
and MC staging have
kown lifetime, have no
side effects, and are
well-documented.

8

2.4 VMC + FairROOT Extension Interfaces

=> No way to unobtrusively extend FairROOT’s interface
consumers (reason ‘coz MPD/BMN went the other way?)

FairMCApplication::Stepping() has ~80 lines of
code while the instance itself is created within the
FairRunSim::Init() method of ~100 lines of code.

Overriding it via legitimate way (inside VMC interfaces) will
require injection of >3 additional classes with copy/pasting
semantically saturated code.

9

3.1 The Aggregation Kludge

=> Doing things right now.

Instead of extension by
inheritance, the VMC’s actions
are immersed within
supporting implementations via
aggregation.

Possible drawback: type
downcasting chain broken.

SPDRoot must implement own
MCSim/MCRun classes to
inject customized logic within
MC stack staging process.

10

3.2 Identifying the Tracks

=> Significant effort to establish the one-to-one relation within the ROOT file

● Geant4 uses uniq IDs to identify the tracks built
● MC stack itself is deterministic
● VMC writes MC stack formulated with TGeoTrack’s kept by FairStack (!)
● FairROOT applies cuts before writing SpdMCTrack’s into TTree instance

defined by its IO manager (thus, breaking deterministic order)
● Three instances referring same entity arranged in non-matching sequential

arrays!

11

3.3 Domain Specific Language for Filtering
Conditions

=> Expressive solutions for every-day needs.

expessions ::= expr
 | expr ';' expressions
 ;

 expr := label ':' filters
 ;

 filters ::= filter
 | '(' filters ')'
 | filter '&' filters
 | filter '|' filters
 ;

 filter ::= predicate
STRING_LEXEME
 ;

 predicate ::= '='
 | '!'
 | '>'
 | ">="
 | '<'
 | "<="
 ;

 label ::= ALNUM
 ;

Grammar:

Examples with DSL:
● particleType:!gamma
● particleType:*’
● eKin>=100MeV&eKin<5GeV; particleType:=mu+|mu

-

Currently filtering conditions are hardcoded or passed
by CINT’s callbacks.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

class SpdPickInitialParticlesTask : public FairTask {
public:
 SpdPickInitialParticlesTask(std::set<Int_t> *
setPtr);
 virtual InitStatus Init();
 virtual void Exec(Option_t* opt);
 void Collect(Int_t code);
private:
 std::set<Int_t> fPDGCodes;
 std::set<Int_t> * fChoosenOnes;
 TClonesArray * fMCTracks;
 ClassDef(SpdPickInitialParticlesTask, 0);
};

([[:alpha:]][[:alnum:]]*):(([=><]{1,2})([^\|\&]+))((\||\&)(([=><]{1,2})([^\|\&]+)))*

12

4. Conclusion

● SPDRoot shall either define overriding classes on
FairROOT or stay straight within the existing functionality
regulated by forthcoming 3-rd party releases (ROOT7,
ALFA?)

● Elusive sacred knowledge: (almost) no docs, no dev
pipeline, no self-documenting, C++ 94

(primary DY mu+/mu- for 4e3
events)

5. Results

● Dockerfiles ready for recent and last but one releases
of FairSoft/FairROOT bundles

● Doxygen cfg introduced (where to deploy?)
● cis-mc lib getting ready for practical use (TODO: DSL,

for convenience), promising preliminary experience

13

5. Suggestions
Coding

1. Virtual factories: event data hierarchy, application classes, RPC/IPS messaging
2. Fixed signatures & contracts for treatment utils
3. Configuration files (YAML/JSON/etc.)
4. Involve generic programming (C++ templates), C++11, boost phoenix
5. Logging facility (sinks)
6. Unit testing, system testing
7. Issue tracking, ticket assignment, activity logging, etc

System

1. Integration with CI/CD (keeping master branch protected!)
2. Deterministic builds (HybriLIT fits!):

a. No more dangling shell scripts with volatile environment (no explicit usage of config.[c]sh ,
thisroot.[c]sh , etc)

b. Full reproducible OS assembly (clamped repo, binary compatibility)
c. Supersede FairSoft’s shell scripting (~2.5 straightforward scripts doing labile fetches)
d. Binary packaging during scheduled (nightly) builds

3. https://readthedocs.org/
4. NICARoot

14

https://readthedocs.org/

