Perturbatively stable observables in heavy flavor production as probes of the nucleon spin and flavor content

Nikolay Ivanov

Veksler and Baldin Laboratory of High Energy Physics, Yerevan Physics Institute

Novel proposals for heavy quark physics at *ep-*, *pp-* and *AA-* colliders (COMPASS, EIC, LHeC, LHC and NICA)

Dubna, April 2, 2018

Outline:

Perturbatively (and parameterically) stable observables:

> Azimuthal asymmetry in photoproduction;

> Calan-Gross ratio $R = F_L / F_T$, cos ϕ and cos 2ϕ asymmetries in electroproduction

- Proposed applications:
 - Test of pQCD;
 - Determination of the charm content of the proton;
 - Search for the linearly polarized gluons in unpolarized proton

Outlook for NICA: Azimuthal correlations in pp and AA

References

1. Perturbative stability :

- N.Ya.Ivanov, A.Capella, A.B.Kaidalov, Nucl. Phys. **B** 586 (2000), 382
- N.Ya.Ivanov, Nucl. Phys. **B** 615 (2001), 266
- N.Ya.Ivanov, Nucl. Phys. **B** 666 (2003), 88
- L.N.Ananikyan and N.Ya.Ivanov, Phys. Rev. **D** 75 (2007), 014010
- N.Ya.Ivanov and B.A. Kniehl, Eur. Phys. J. C 59 (2009), 647
- 2. Heavy-quark densities in the proton:
- L.N.Ananikyan and N.Ya.Ivanov, Nucl. Phys. **B** 762 (2007), 256
- N.Ya.Ivanov, Nucl. Phys. **B** 814 (2009), 142
- 3. Test of pQCD grounds:
- N.Ya.Ivanov, P.E.Bosted, K.Griffioen, Nucl. Phys. **B** 650 (2003), 271
- A.V.Efremov, N.Ya.Ivanov, O.V.Teryaev, Phys.Lett. **B** 772 (2017), 283
- 4. Linearly polarized gluons in unpolarized proton:
- A.V.Efremov, N.Ya.Ivanov, O.V.Teryaev, Phys.Lett. B 777 (2018), 435
- A.V.Efremov, N.Ya.Ivanov, O.V.Teryaev, Phys.Lett. B 780 (2018), 303

Perturbative stability in charm photoproduction

We propose to test the pQCD applicability to heavy flavor production with the help of azimuthal $\cos 2\phi$ asymmetry in charm photoproduction

$$\gamma^{\uparrow} + N \to Q + X[\overline{Q}]$$

Corresponding cross section is:

$$\frac{\mathrm{d}\sigma_{\gamma h}}{\mathrm{d}\varphi}(S,\varphi) = \frac{\sigma_{\gamma h}^{\mathrm{unp}}(S)}{2\pi} (1 + A(S)\mathcal{P}_{\gamma}\cos 2\varphi)$$

where \mathcal{P}_{γ} is the degree of linear polarization of the photon,

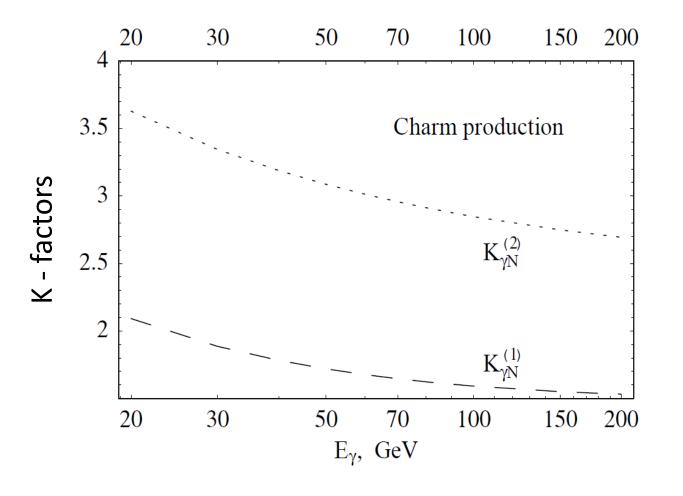
 \overline{S} is the centre of mass energy of the reaction,

and φ is the angle between the photon polarization and quark \perp momentum

We observe the following remarkable properties:

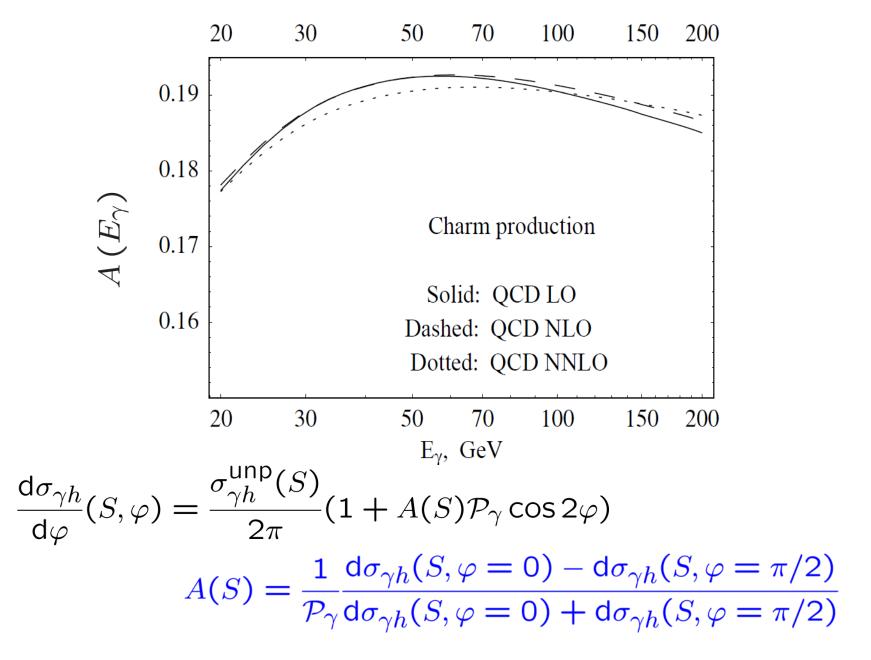
- ➢ The azimuthal asymmetry is large: it is predicted to be about 20% for both charm and bottom;
- > Contrary to the production cross sections, the $\cos 2\phi$ asymmetry in azimuthal distributions of heavy quark is practically insensitive to soft-gluon radiation;
- > pQCD predictions for A(S) are insensitive (to within few percent) to uncertainties in the QCD input parameters: $m, \mu_R, \mu_F, \Lambda_{QCD}$ and PDFs; > The nonperturbative contributions are also small. The following
- mechanisms was considered:
 - Gluon transverse motion in the target;
 - Heavy quark fragmentation;
 - The bound state effects due to Fermi motion of the c-quark inside the D-meson.

Perturbative instability of the cross section



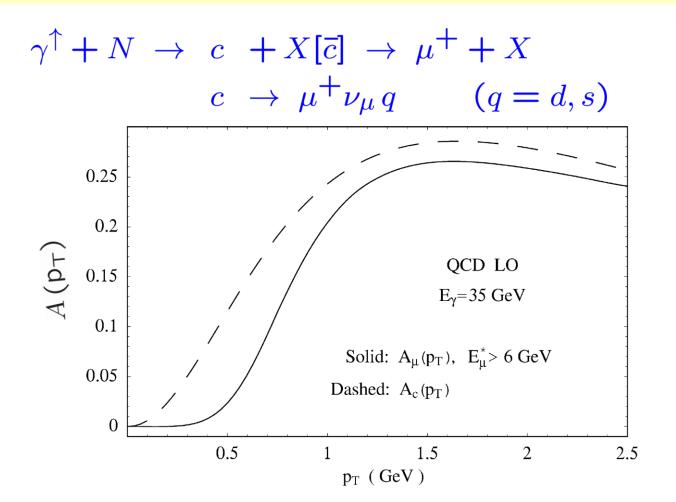
 $K_{\gamma h}^{(1)}(S) = \sigma_{\gamma h}^{\mathsf{NLO}}(S) / \sigma_{\gamma h}^{\mathsf{LO}}(S)$ $K_{\gamma h}^{(2)}(S) = \sigma_{\gamma h}^{\mathsf{NNLO}}(S) / \sigma_{\gamma h}^{\mathsf{NLO}}(S)$

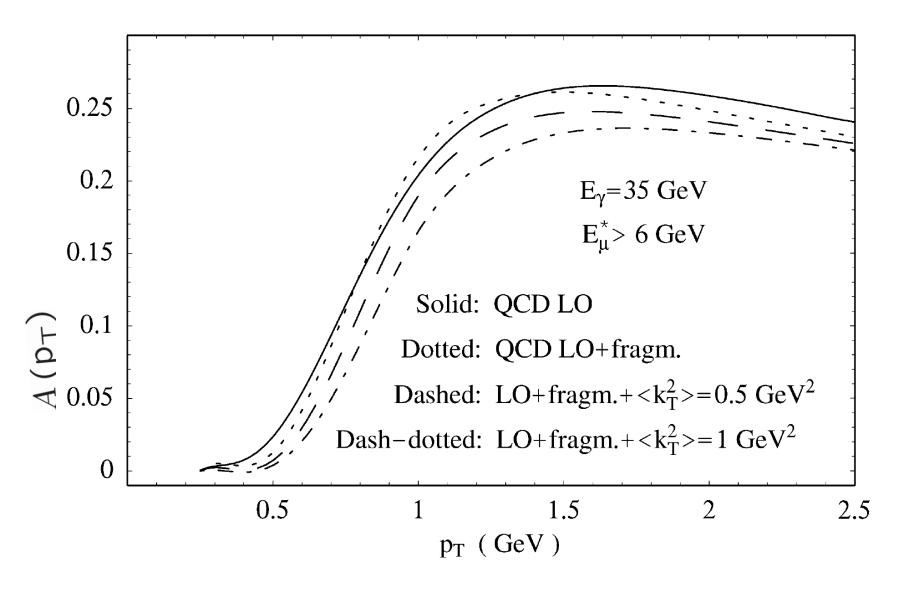
Perturbative stability of the asymmetry



Azimuthal asymmetry in charm photoproduction at SLAC

Azimuthal asymmetry in charm photoproduction could be measured at SLAC in E160/E161 experiments using the inclusive spectra of secondary (decay) leptons: [Ivanov, Bosted, Griffioen, Rock, NP B 650 (2003) 271]





Perturbative stability in charm electroproduction Definitions and Cross Sections

We consider the Callan-Gross ratio $R=F_L/\ F_T$ and azimuthal $cos\ 2\phi$ asymmetry, $A=\!2xF_A/\ F_2$, in heavy-quark leptoproduction:

$$l(\ell) + N(p) \rightarrow l(\ell - q) + Q(p_Q) + X[\overline{Q}](p_X)$$

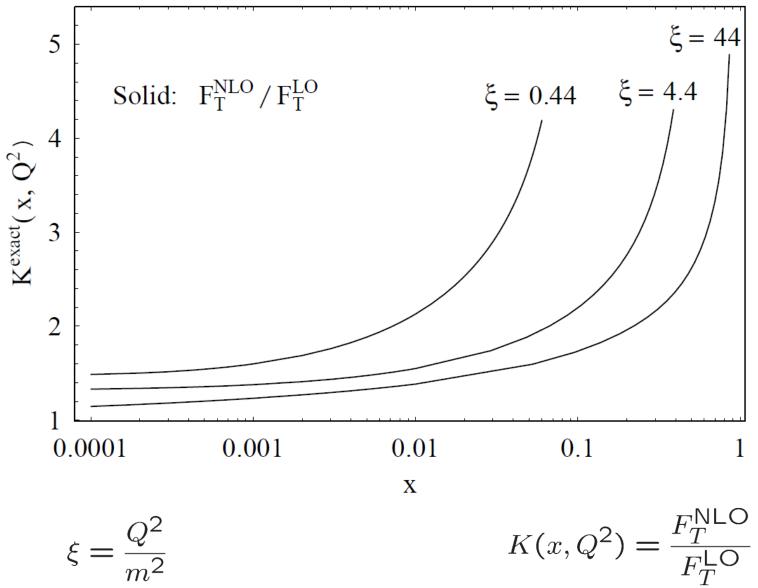
Corresponding cross section is:

$$\frac{\gamma^*}{l}$$

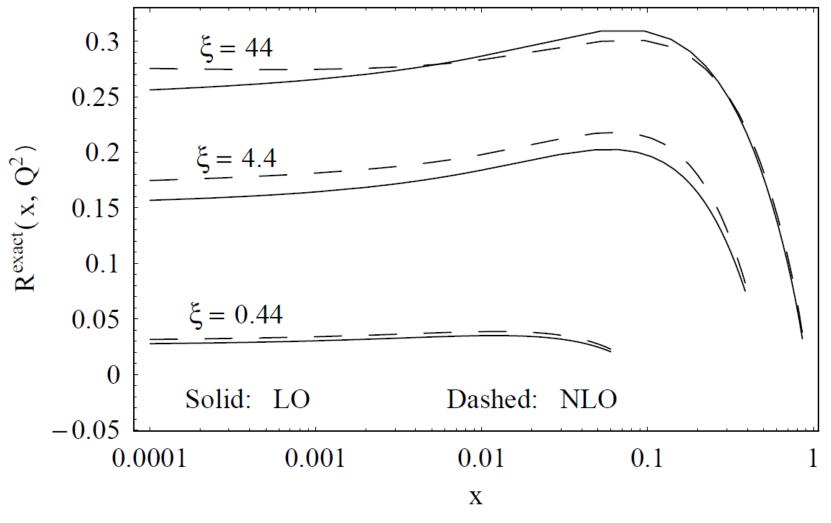
$$\frac{d^{3}\sigma_{lN}}{dxdQ^{2}d\varphi} = \frac{\alpha_{em}^{2}}{xQ^{4}} \left\{ \left[1 + (1-y)^{2} \right] F_{2}(x,Q^{2}) - 2xy^{2}F_{L}(x,Q^{2}) + 4x(1-y)F_{A}(x,Q^{2})\cos 2\varphi + 4x(2-y)\sqrt{2(1-y)}F_{I}(x,Q^{2})\cos \varphi \right\}$$

where $F_2(x,Q^2) = 2x(F_T + F_L)$ and x, y, Q^2 are usual DIS observables

Perturbative intability of the cross section



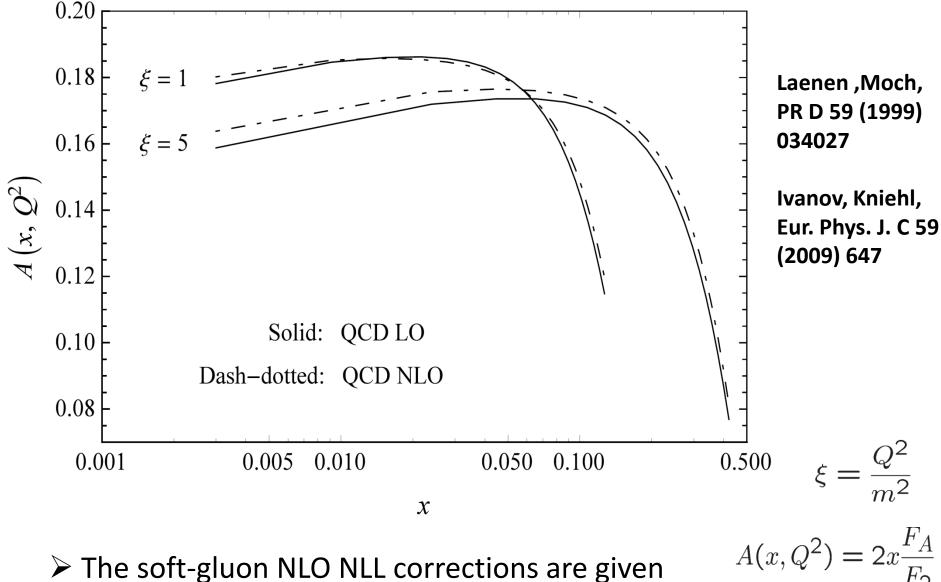
Perturbative stability of $R = F_L / F_T$



ξ =

 $=\frac{F_L}{F_T}$ $R(x,Q^2)$

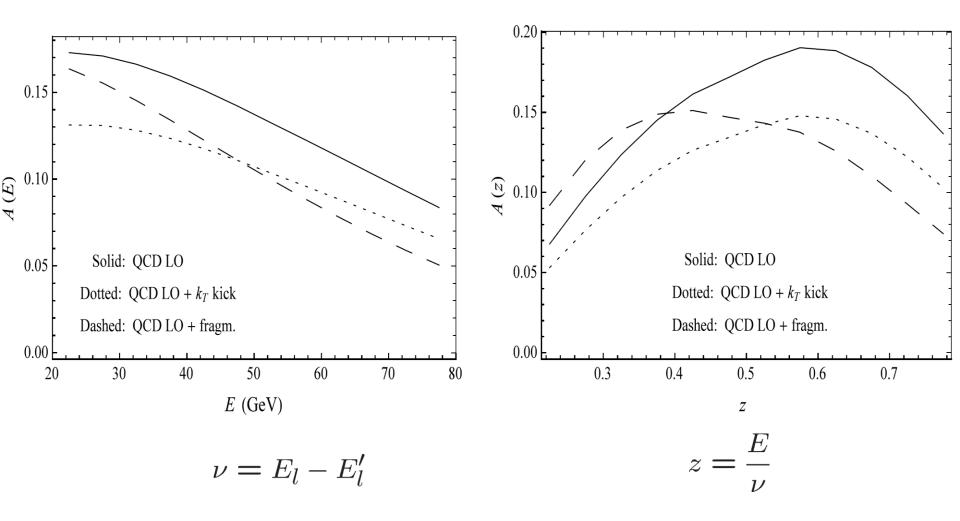
Perturbative stability of A = 2xF_A / F_2



The soft-gluon NLO NLL corrections are given

cos2 asymmetry in charm electroproduction at COMPASS

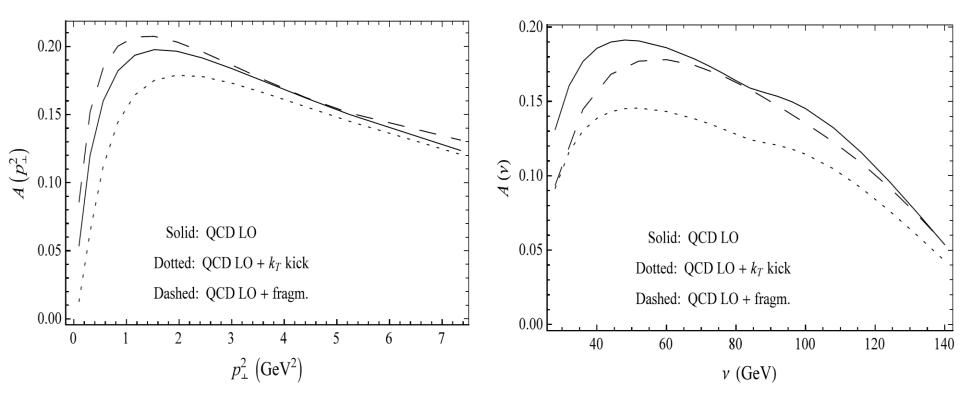
cos2φ asymmetry in charm electroproduction can be measured at COMPASS : Efremov, Ivanov, Teryaev, Phys.Lett. B 772 (2017), 283



cos2¢ asymmetry in charm electroproduction at COMPASS

COMPASS kinematics:

 $0.003 < Q^2 < 10 \text{ GeV}^2$, $3 \cdot 10^{-5} < x < 0.1$, 20 < E < 80 GeV



 $\nu = E_l - E'_l$

Application I: Charm density in the proton

The *perturbative charm* was introduced about 20 years ago in

- J.C.Collins, Phys. Rev. **D** 58 (1998), 094002
- M.A.G.Aivazis, J.C.Collins, F.I.Olness, and W.-K.Tung, Phys. Rev. **D** 50 (1994), 3102

The perturbative charm contribution

- □ is defined in the VFNS :
 - \succ FFNS : $p \rightarrow (u, d, s, g)$
 - \succ VFNS : $p \rightarrow (u, d, s, g) + (c, b, t)$
- \Box originates from $g \rightarrow c\overline{c}$ process,

 \Box has perturbative nature and $c(x, Q^2)$ obeys usual DGLAP evolution

Our approach is based on following observations:

The ratios $R = F_L / F_T$ and $A = 2xF_A / F_2$ in heavy-quark leptoproduction are perturbatively stable within the FFNS. The quantities F_L / F_T and $2xF_A / F_2$ are sensitive to resummation of the mass logarithms of the type $\alpha_s \ln(Q^2 / m^2)$ within the VFNS.

These facts together imply that (future) high-Q² data on the ratios $R = F_L / F_T$ and $A = 2xF_A / F_2$ will make it possible to probe the heavy-quark densities in the nucleon, and thus to compare the convergence of perturbative series within the FFNS and VFNS.

Remember that, within the VFNS, the heavy-quark content of the proton is due to resummation of the mass logarithms of the type $\alpha_s \ln(Q^2/m^2)$ and, for this reason, closely related to behavior of asymptotic perturbative series for high Q².

The leading mechanism is the photon-gluon fusion

$$\gamma^{*}(q) + g(k_{g}) \rightarrow Q(p_{Q}) + \overline{Q}(p_{\overline{Q}})$$
Leveille, Weiler, PRD 24 (1981) 1789
Watson, Z. Phys. C 12 (1982) 123

$$\hat{\sigma}_{2,g}^{(0)}(z,\lambda) = \frac{\alpha_{s}}{2\pi} \hat{\sigma}_{B}(z) \{ [(1-z)^{2} + z^{2} + 4\lambda z(1-3z) - 8\lambda^{2}z^{2}] (\ln \frac{1+\beta_{z}}{1-\beta_{z}}) - [1+4z(1-z)(\lambda-2)]\beta_{z} \},$$

$$\hat{\sigma}_{L,g}^{(0)}(z,\lambda) = \frac{2\alpha_{s}}{\pi} \hat{\sigma}_{B}(z) z\{ -2\lambda z(1-2\lambda) (\ln \frac{1+\beta_{z}}{1-\beta_{z}}) + (1-z)\beta_{z} \},$$

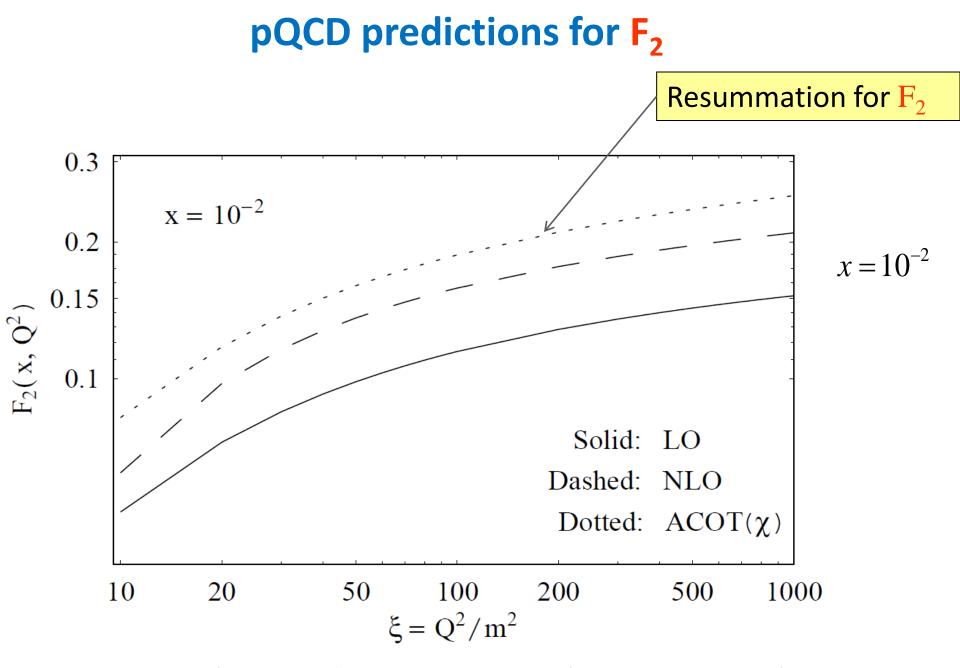
$$\hat{\sigma}_{A,g}^{(0)}(z,\lambda) = \frac{\alpha_{s}}{\pi} \hat{\sigma}_{B}(z) z\{ 2\lambda [1-2z(1+\lambda)] (\ln \frac{1+\beta_{z}}{1-\beta_{z}}) + (1-2\lambda)(1-z)\beta_{z} \},$$

$$\hat{\sigma}_{I,g}^{(0)}(z,\lambda) = 0$$

$$z = \frac{Q^{2}}{2q \cdot k_{g}}, \qquad \lambda = \frac{m^{2}}{Q^{2}}, \qquad \beta_{z} = \sqrt{1-\frac{4\lambda z}{1-z}}$$

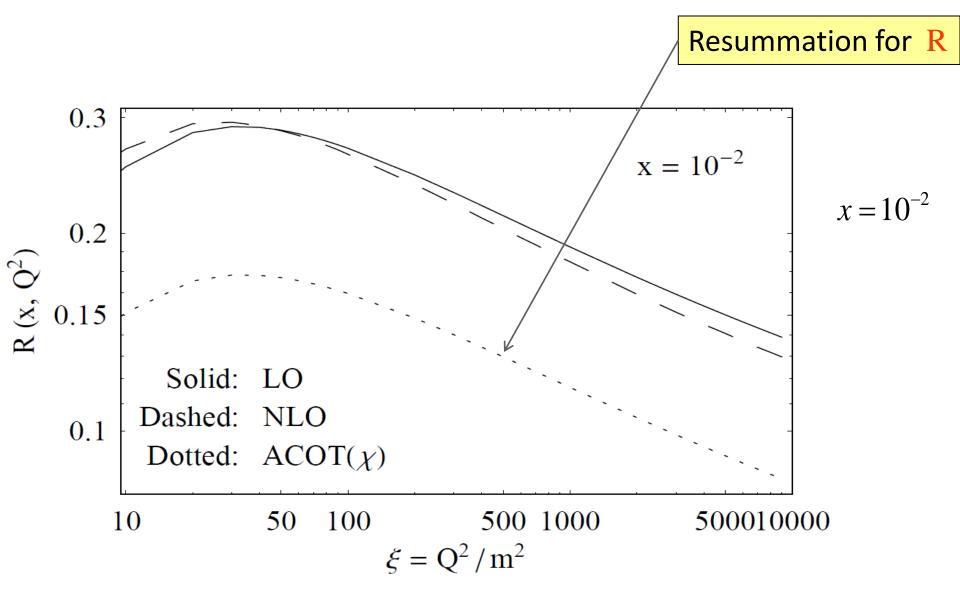
 \sum_{γ^*}

$$\hat{\sigma}_B(z) = \frac{(2\pi)^2 e_Q^2 \alpha_{em}}{Q^2} z$$



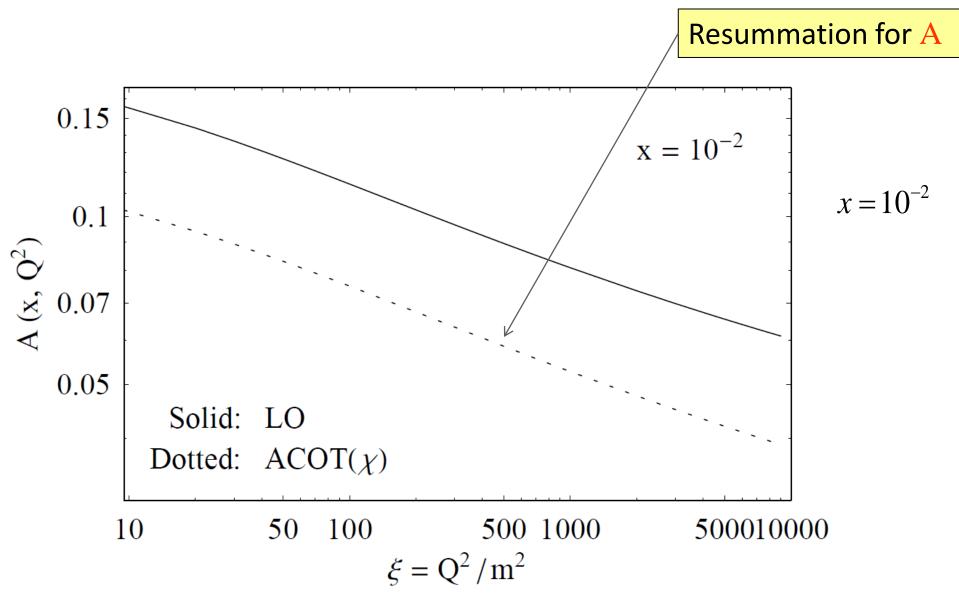
For F_2 the NLO and resummation contributions are very close

pQCD predictions for **R**



CTEQ6M PDFs are used for estimates

pQCD predictions for A



CTEQ6M PDFs are used for estimates

Application II: Linearly polarized gluons in unpolarized proton

To probe the TMD distribution, the momenta of both heavy quark and anti-quark should be measured (reconstructed) in the reaction:

 $l(\ell) + N(p) \rightarrow l'(\ell - q) + Q(p_Q) + \bar{Q}(p_{\bar{Q}}) + X(p_X)$

Corresponding cross section is:

 $\mathsf{d}\sigma \propto L(\ell,q)\otimes \Phi_g(\zeta,k_T)\otimes \left|H_{\gamma^*g o Qar{Q}X}(q,k_g,p_Q,p_{ar{Q}})
ight|^2$

$$\Phi_g^{\mu\nu}(\zeta,k_T) \propto -g_T^{\mu\nu} f_1^g(\zeta,\vec{k}_T^2) + \left(g_T^{\mu\nu} - 2\frac{k_T^{\mu}k_T^{\nu}}{k_T^2}\right) \frac{\vec{k}_T^2}{2m_N^2} h_1^{\perp g}(\zeta,\vec{k}_T^2)$$

$$k_g^\mu \simeq \zeta P^\mu + k_T^\mu, \quad \vec{q}_T = \vec{k}_T$$

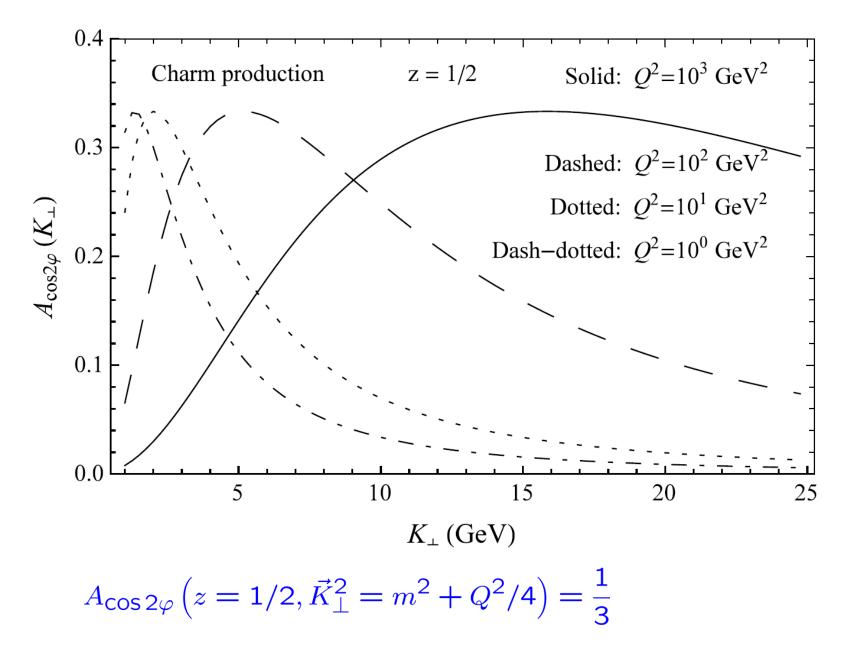
The resulting cross section is:

(2018), 435

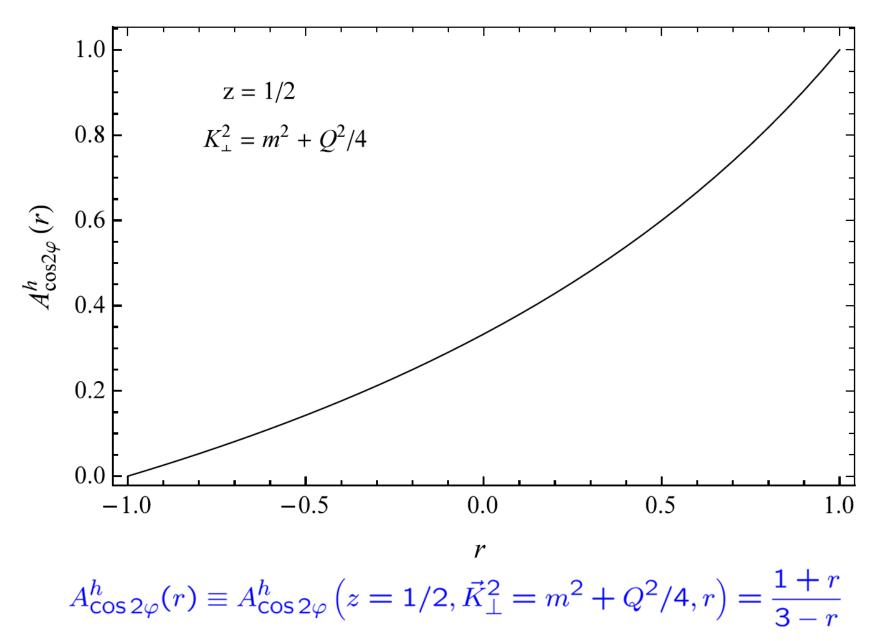
$$\frac{d^{6}\sigma^{(\pi)}}{dy \, dx \, dz \, d\vec{K}_{\perp}^{2} d\vec{q}_{T}^{2} d\varphi} = \frac{e_{Q}^{2} \alpha_{em}^{2} \alpha_{s}}{8 \, \bar{s}^{2}} \frac{f_{1}^{q}(\zeta, \vec{q}_{T}^{2}) \hat{B}_{2}}{y^{3} x \, \zeta \, z \, (1-z)} \left\{ \left[1 + (1-y)^{2} \right] \left(1 - 2r \frac{\hat{B}_{L}}{\hat{B}_{2}} \right) - y^{2} \frac{\hat{B}_{L}}{\hat{B}_{2}} \left(1 - 2r \frac{\hat{B}_{L}}{\hat{B}_{L}} \right) \right. \\ \left. + 2(1-y) \frac{\hat{B}_{A}}{\hat{B}_{2}} \left(1 - 2r \frac{\hat{B}_{A}}{\hat{B}_{A}} \right) \cos 2\varphi + (2-y) \sqrt{1-y} \frac{\hat{B}_{I}}{\hat{B}_{2}} \left(1 - 2r \frac{\hat{B}_{I}}{\hat{B}_{I}} \right) \cos \varphi \right] \\ r \equiv r(\zeta, \vec{q}_{T}^{2}) = \frac{\vec{q}_{T}^{2}}{2m_{N}^{2}} \frac{h_{\perp}^{\perp g}(\zeta, \vec{q}_{T}^{2})}{f_{1}(\zeta, \vec{q}_{T}^{2})} \\ \zeta = \frac{-U_{1}}{y\bar{S} + T_{1}} = x + \frac{m^{2} + \vec{K}_{\perp}^{2}}{z \, (1-z)y\,\bar{S}} \\ \vec{K}_{\perp} = \frac{1}{2} \left(\vec{p}_{Q\perp} - \vec{p}_{\bar{Q}\perp} \right), \quad \vec{q}_{T} = \vec{p}_{Q\perp} + \vec{p}_{\bar{Q}\perp}$$

$$\varphi = \varphi_{Q}$$
Efremov, Ivanov, Teryaev, Phys.Lett. B 777

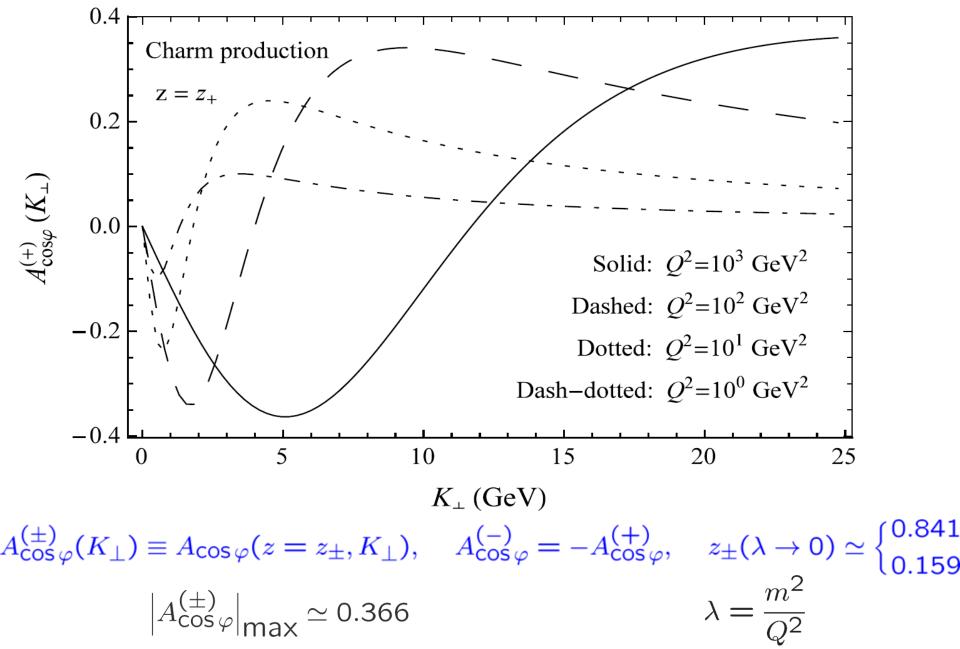
pQCD predictions for $\cos 2\phi$ asymmetry (r = 0)



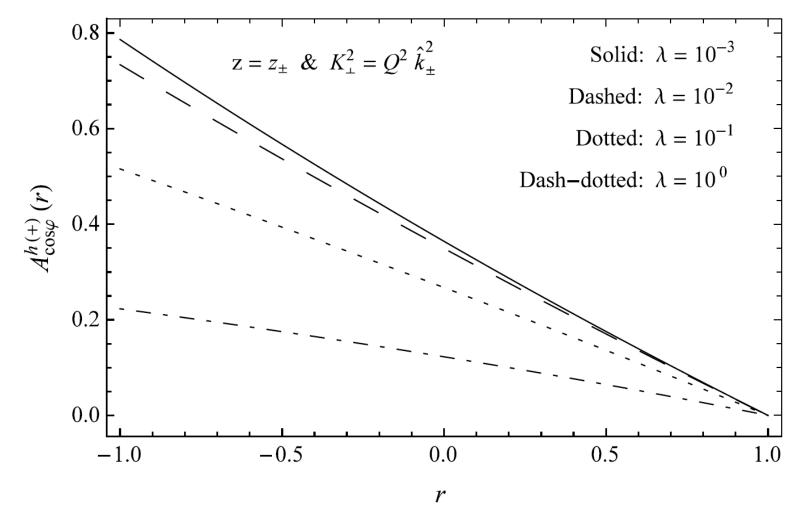
pQCD predictions for cos 2ϕ asymmetry (r \neq 0)



pQCD predictions for $\cos \phi$ asymmetry (r = 0)



pQCD predictions for $\cos \phi$ asymmetry (r \neq 0)



$$A_{\cos\varphi}^{h(\pm)}(r) \stackrel{\lambda \to 0}{=} \pm \frac{(\sqrt{3}-1)(1-r)}{2-r(1-2/\sqrt{3})} \qquad |A_{\cos\varphi}^{h(\pm)}|_{\max} \simeq 0.793$$

Azimuthal correlations in charm hadroproduction

To probe the TMD distributions in **pp**- and **AA**- collisions, the momenta of both heavy quark and anti-quark should be measured,

 $p_1(P_1) + p_2(P_2) \to Q(p_Q) + \bar{Q}(p_{\bar{Q}}) + X(p_X)$

Corresponding cross section is:

$$d\sigma \propto \sum_{a,b} \Phi_a(\zeta_a, k_{aT}) \otimes \Phi_b(\zeta_b, k_{bT}) \otimes \left| H_{ab \to Q\bar{Q}X}(k_a, k_b, p_Q, p_{\bar{Q}}) \right|^2$$
$$k_a^{\mu} \simeq \zeta_a P_1^{\mu} + k_{aT}^{\mu}, \quad k_b^{\mu} \simeq \zeta_b P_2^{\mu} + k_{bT}^{\mu}$$

In this case, both quark and gluon densities do contribute at LO:

$$\Phi_{g}^{\mu\nu}(\zeta,k_{T}) \propto -g_{T}^{\mu\nu}f_{1}^{g}(\zeta,\vec{k}_{T}^{2}) + \left(g_{T}^{\mu\nu} - 2\frac{k_{T}^{\mu}k_{T}^{\nu}}{k_{T}^{2}}\right)\frac{\vec{k}_{T}^{2}}{2m_{N}^{2}}h_{1}^{\perp g}(\zeta,\vec{k}_{T}^{2})$$
$$\Phi_{q}(\zeta,k_{T}) \propto f_{1}^{q}(\zeta,\vec{k}_{T}^{2})\hat{P} + ih_{1}^{\perp q}(\zeta,\vec{k}_{T}^{2})\frac{[\hat{k}_{T},\hat{P}]}{2m_{N}}$$

The resulting cross section is:

 $\frac{\mathrm{d}^{6}\sigma}{\mathrm{d}y_{1}\,\mathrm{d}y_{2}\,\mathrm{d}^{2}\vec{K}_{\perp}\mathrm{d}^{2}\vec{q}_{T}} = \mathcal{N}\left\{A + B\,\vec{q}_{T}^{2}\cos 2(\phi_{\perp} - \phi_{T}) + C\,\vec{q}_{T}^{4}\cos 4(\phi_{\perp} - \phi_{T})\right\}$

$$\vec{K}_{\perp} = \frac{1}{2} \left(\vec{p}_{Q\perp} - \vec{p}_{\bar{Q}\perp} \right), \quad \vec{q}_T = \vec{p}_{Q\perp} + \vec{p}_{\bar{Q}\perp}$$

Schematically, the functions **A**, **B** and **C** have the following structure:

$$\begin{array}{rcl} A & : & f_1^q \otimes f_1^{\overline{q}}, & f_1^g \otimes f_1^g, & h_1^{\perp g} \otimes h_1^{\perp g} \\ B & : & h_1^{\perp q} \otimes h_1^{\perp \overline{q}}, f_1^g \otimes h_1^{\perp g} \\ C & : & h_1^{\perp g} \otimes h_1^{\perp g} \end{array}$$

Pisano, Boer, Brodsky, Buffing, Mulders, JHEP 1310 (2013) 024

