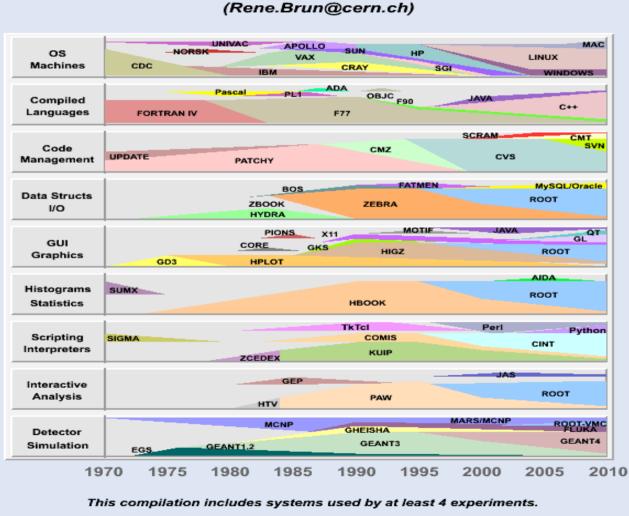
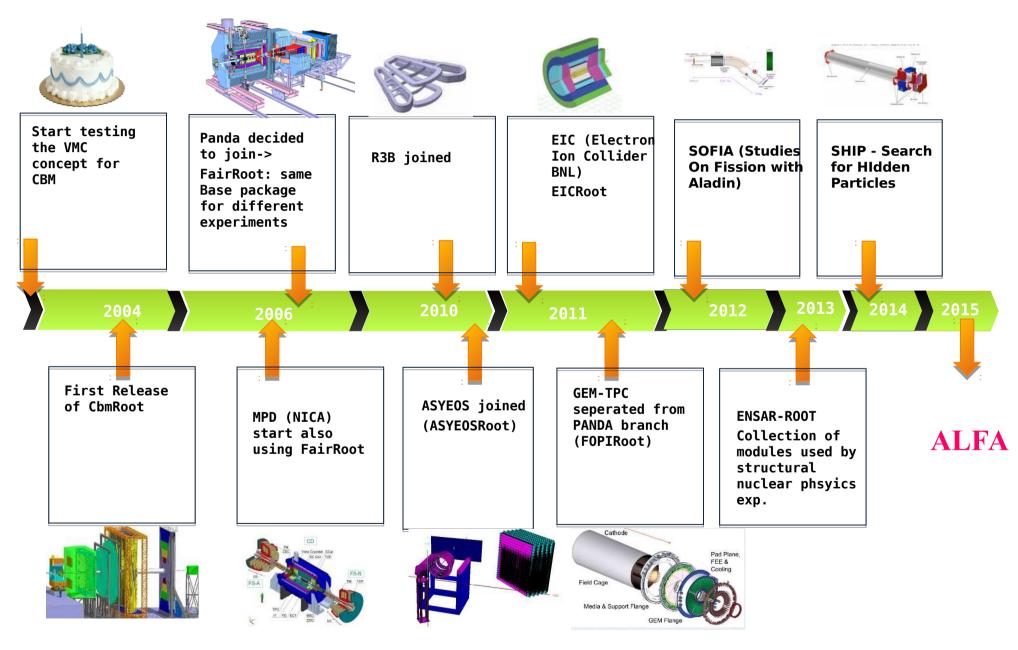

Software development for the NICA experiments


HEP experiments data flow

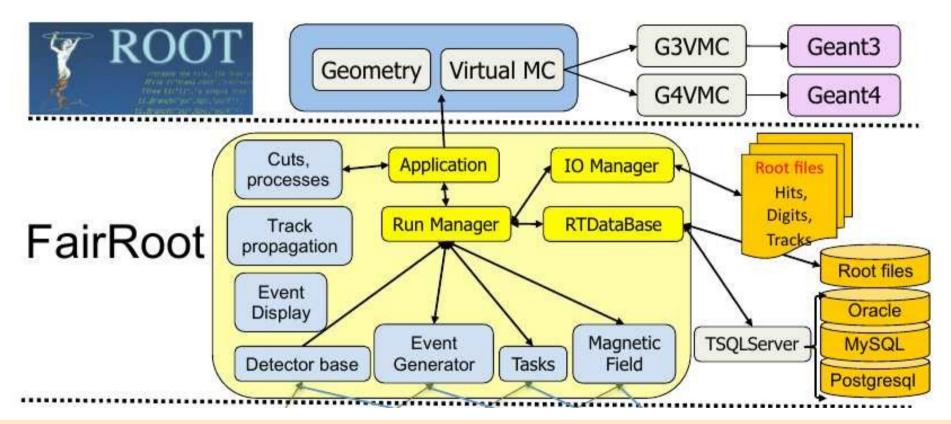
"In the beginning there was only Chaos." Then out of the void appeared ROOT


A Compilation of the main Tools and Packages used in HENP offline software since 1970

The Y scale indicates the relative importance of the system with time.

(The author welcomes comments and additions)

FairRoot


FairRoot

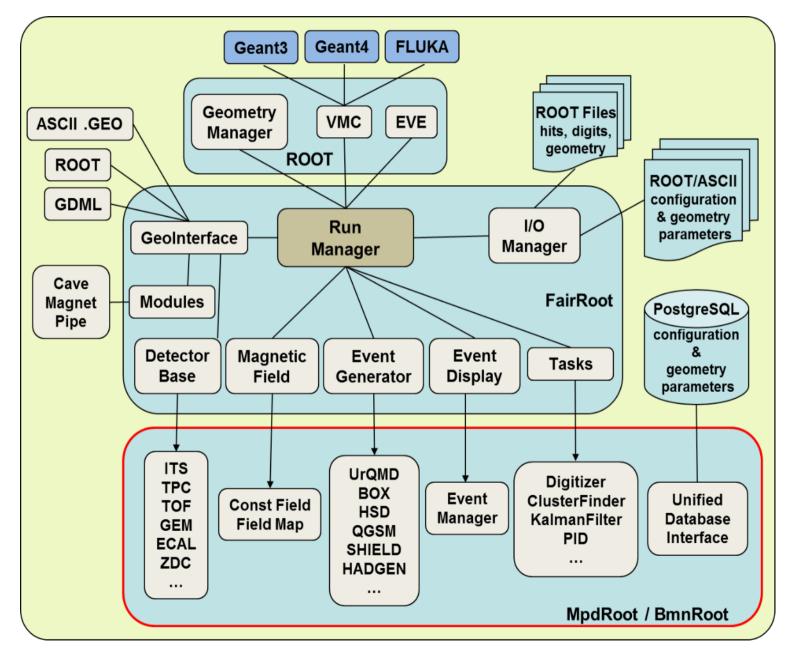
https://fairroot.gsi.de/

The FairRoot framework is an object oriented simulation, reconstruction and data analysis framework based on ROOT. It includes core services for detector simulation and offline analysis. The framework delivers base classes which enable the users to easily construct their experimental setup in a fast and convenient way. By using the Virtual Monte Carlo concept it is possible to perform the simulations using either Geant3 or Geant4 without changing the user code or the geometry description.

FairRoot structure

The basic idea of FairRoot is to provide a unified package with generic mechanisms to deal with most commonly used tasks in HEP. FairRoot allow the physicist to:

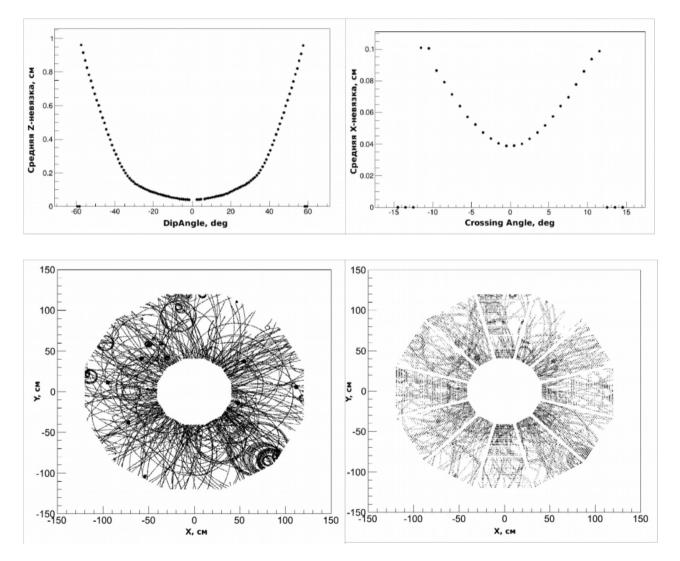
- × Focus on physics deliverables while reusing pre-tested software components.
- X Do not submerge into low-level details, use pre-built and well-tested code for common tasks.
- X Allows physicists to concentrate on detector performance details, avoiding purely software
- x engineering issues like storage, retrieval, code organization etc.

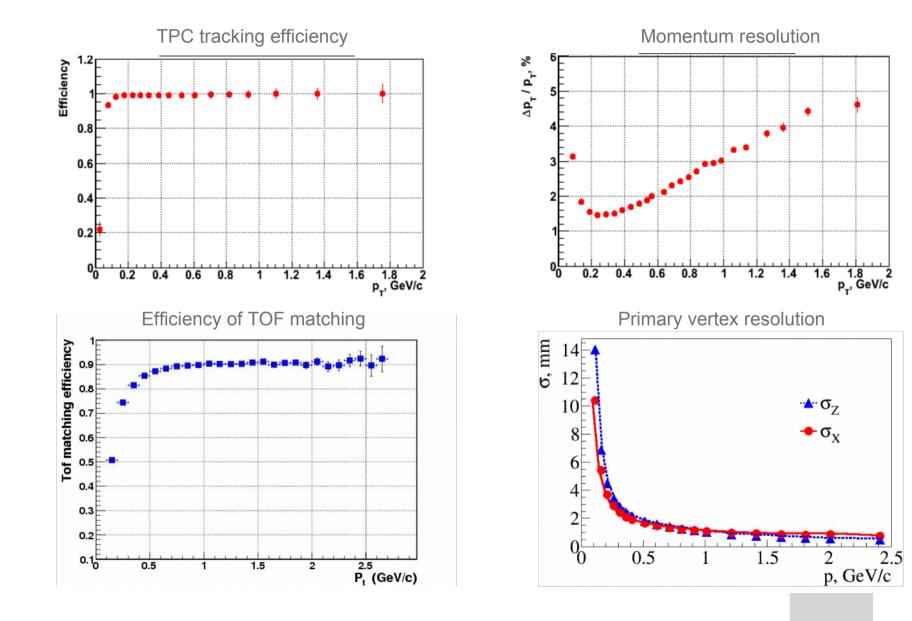

mpd.jinr.ru

NICA EXPERIMENTS

TECHNICAL WEBSITE

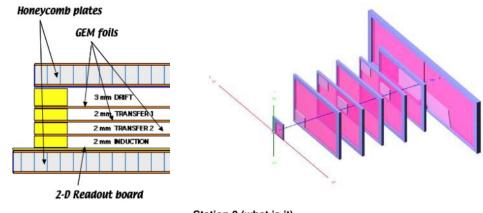
MAIN	DOCUMENTS	COMPUTING	FORUM	REFERENCES	BM@N	SPD	VIDYO
		BMNROOT					_
	n Physics	MPDROOT					-
De	tector (SPI	SPDROOT		GIT ACCESS			
	urements of asym pton pair (Drell-Ya	TDR					
	uction in collisions ized, longitudinally	NICA CLUSTER			A		
	versally polarized erons beams are si	LIT CLUSTERS			X	A	
be [DATABASES					
		ноw то				-	
		CURRENT JOBS	LIST				


MPD/BM@N/SPDRoot design

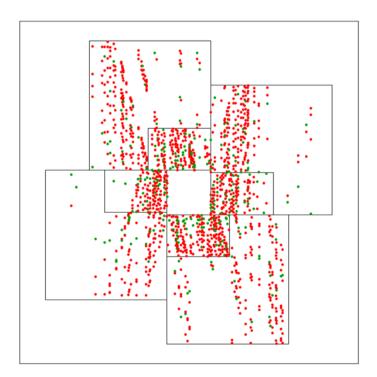

Clustering in MPD TPC

The hit reconstruction algorithm contains the following main steps:

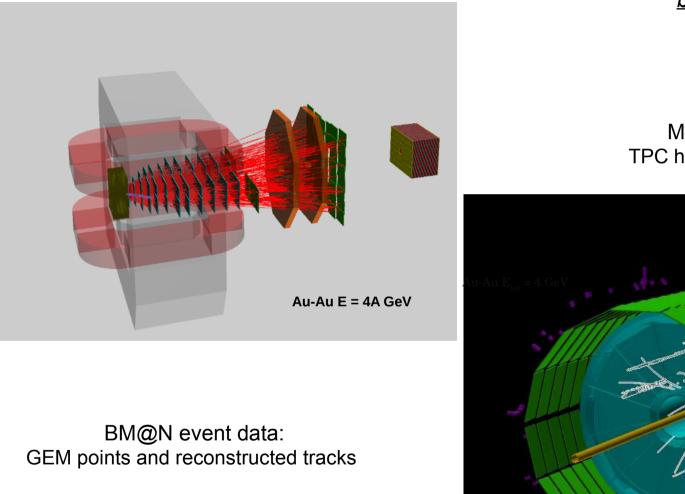
- Searching for extended clusters in (Pad-Time) for each pad raw.
- 2) Searching for peaks in time-profile for each pad in the found extended cluster.
- 3) Combining the neighboring peaks into resulting hits.



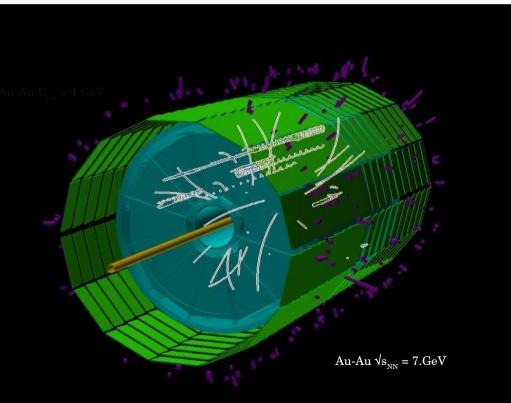
Tracking in MPD TPC


Clustering in GEM

- There are realistic hit finder in GEMs
- For the GEM stations procedure of the fake hits production is implemented



Station 0 (what is it)



Event Display for the NICA experiments

based on EVE package

MPD event data: TPC hits and EMC towers

GIT repository for NICA experiments

https://git.jinr.ru/

You	r Projects	Starred Projects	Explore Projects	
в	NICA / br Simulatio		ework for NICA/BM@N Detectors	
м	NICA / m Simulatio	S 53	ework for NICA/MPD Detectors	
s	NICA / sp Simulatio		ework for NICA/SPD Detectors	
N	NICA / ni Framewo	cafemto ork from Daniel Wiela	nek	
F	NICA / flo	owpack		

GITEVERYDAY(7)

Git Manual

NAME

giteveryday - A useful minimum set of commands for Everyday Git SYNOPSIS

Everyday Git With 20 Commands Or So

Examples

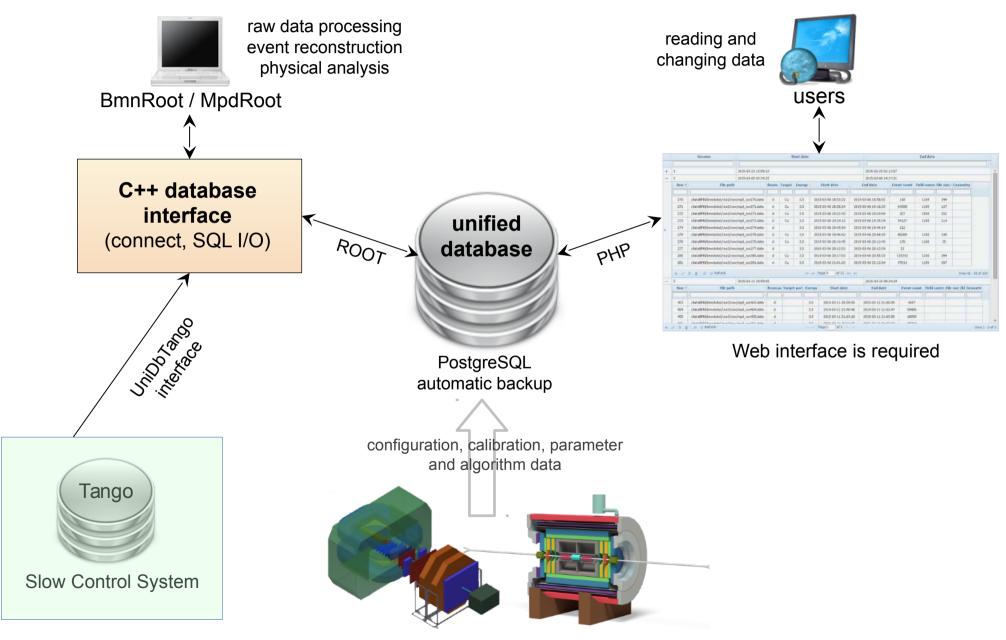
Clone the upstream and work on it. Feed changes to upstream.

\$ git clone git://git.kernel.org/pub/scm/.../torvalds/linux-2.6 my2.6 \$ cd my2.6 \$ git checkout -b mine master (1) \$ edit/compile/test; git commit -a -s (2) \$ git format-patch master (3) \$ git send-email --to="person <email@example.com>" 00*.patch (4) \$ git checkout master (5) \$ git pull (6) \$ git log -p ORIG_HEAD.. arch/i386 include/asm-i386 (7) \$ git log -p ORIG_HEAD.. arch/i386 include/asm-i386 (7) \$ git ls-remote --heads http://git.kernel.org/.../jgarzik/libata-dev.git (8) \$ git pull git://git.kernel.org/pub/.../jgarzik/libata-dev.git ALL (9) \$ git reset --hard ORIG_HEAD (10) \$ git gc (11)

- 1. checkout a new branch mine from master.
- 2. repeat as needed.
- 3. extract patches from your branch, relative to master,
- 4. and email them.
- 5. return to master, ready to see what's new

6. git pull fetches from origin by default and merges into the current branch.

7. immediately after pulling, look at the changes done upstream since last time we checked, only in the area we are interested in.


8. check the branch names in an external repository (if not known).

9. fetch from a specific branch ALL from a specific repository and merge it.

10. revert the pull.

11. garbage collect leftover objects from reverted pull.

The Unified Database for offline data processing

Detectors databases

	Run Ne	Period No	Start run date	End run date	File path (NICA cluster)	Beam	Target	Energy, Gev	Events	Field	File size, Mb	Geometry Id
		Al T										
÷	12	9	2015-02-22 15:55:12	2015-02-22 15:55:13	/dataBMN/bmndata1/run1/raw/mpd_run012.data	đ		3.50	100	nut	null	17
+	13	21	2015-02-22 16:01:04	2015-02-22 16:02:50	/dataBMN/bmmdata1/run1/raw/mpd_nan013.data	(d)		3.50	5,720	null	nut	17
+	14	- 34	2015-02-22 16:06:33	2015-02-22 16:05:45	/dataBMN/bmndata1/run1/raw/mpd_run014.data	d		3.50	214	nat	nut	17
+	15	1	2015-02-22 10:10:13	2015-02-22 16:11:13	/dataBMN/bmndata1/run1/raw/mpd_run015.data	đ		3.50	41	nuil	nul	17
÷	16	1	2015-02-22 16:12:14	2015-02-22 16:13:03	/dataBMN/bmmdata1/run1/raw/mpd_run016.data	đ		3.50	39	null	nul	17
+	17	4	2015-02-22 16:13:09	2015-02-22 16:13:50	/dataBMN/bmndata1/run1/raw/mpd_run017.data	đ		3.50	22	mult	null	17
÷	15	1	2015-02-22 15:11:04	2015-02-22 15:15:07	/dataBMN/bmndata1/run1/raw/mpd_run016.data	đ		3.50	12,694	nut	null	17
÷	25	a	2015-02-22 19:42:23	2015-02-22 20:01:54	(dataBMN/bmndata1/nun1/raw/mpd_run025.data	d d		3,50	24,469	mult	nuti	17
+	27	4	2015-02-22 21:24:03	2015-02-22 21 25:00	/dataBMN/bmindata1/run1/raw/mpd_run027.data	d		3.50	165	null	null	17
+	32	- 11	2015-02-22 21:36:09	2015-02-22 21:36:22	/dataBMN/bmmdata1/run1/raw/mpd_run032.data	(a)		3.50	10	null	nuli	17
+	33	- 31	2015-02-22 21:36:31	2015-02-22 21:41:41	/dataBMN/bmndata1/run1/raw/mpd_run033.data	d		3:50	115	null	nut	17
+	34	1	2015-02-22 21:41:50	2015-02-22 21:53:55	/dataBMN/bmndata1/run1/raw/mpd_run034.data	đ		3.50	133	nuit	nul	17
+	35	1	2015-02-22 02:00:00	2015-02-22 00:00:00	/dataBMN/bmmdata1/run1/raw/mpd_run035.data	đ		3.50	3,454	.0	5.00	17
÷	36	4	2015-02-22 21:55:00	2015-02-22 22:02:36	/dataBMN/bmndata1/run1/raw/mpd_run036.data	đ		3.50	0,724	nut	nut	17
÷	40	1	2015-02-22 22:03:39	2015-02-22 22:21:29	/dataBMN/bmndata1/run1/raw/mpd_run040.data	đ		3.50	46,932	nut	null	17
÷	42	3	2015-02-22 22:23:35	2015-02-22 22:27:32	(dataBMN/bmndata1/nun1/raw/mpd_run042.data	(B)		3,50	9,955	mult	nuti	17
+	44	1	2015-02-22 22:25:56	2015-02-22 22:32:59	/dataBMN/bmndata1/run1/raw/mpd_run044.data	d		3.50	10,675	null	null	17

View 1 - 17

EDIT MODE

E-log database

Logged in as shift

Home Find Last day

BM@N common e-log, Page 1 of 106

Number of items per page: 10 V Logo

Date	Shift Leader	Туре	Na Run	Trigger	DAQ Status	SP-41, A	SP-57, A	VKM2, A	Beam	Energy, GeV	Target	Comment
2018-03-07.08:14:09	Dryablov	New Run	2487 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	D	с	3.17	H2 (300 mm)	IT-BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 2-3 sec, Live time:~100%, #N:S0KEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:49:29	Dryablov	New Run	2485 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	ø	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 2-3 sec, Live time:~100%, #N;50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:31:40	Dryablov	New Run	2484 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	Q	с	3,17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 2-3 sec, Live time~100%, #N.50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:05:41	Dryablov	New Run	2483 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	o	с	3.17	H2 (300 mm)	IT-BC1&BC2&VC&SRC(AND), beam 3x10*5 beam duration 3-4 sec, Live time~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 04:46:18	Dryablov	New Run	2481 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	с	3.17	H2 (300 mm)	IT-BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3-4 sec, Live time:~100%, #X:S0KEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 04:20:02	Dryablov	New Run	2480 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	o	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3-4 sec, Live time:~100%, #N:S0KEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 03:52:47	Dryablov	New Run	2479 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	o	o	c	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3-4 sec, Live time:~100%, #XIS0REvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 03:23:23	Dryablov	New Run	2478 per.7	SRCT2 Full Trigger = IT & {X1 & Y1) & (X2 & Y2}	All in except ECal and CSC	1800	0	0	c	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10°S beam duration 3 sec, Live time:~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10. Ra of BC2/BC1-04 & VC/BC1-0-44, vo contact with Rukoyatkin Pavel started at run #2474
2018-03-07 02:56:01	Dryablov	New Run	2477 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	o	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 1.5x10^5 bear duration 3 sec, Live time:~100%, #N:51&Events, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 02:24:48	Dryablov	New Run	2475 per.7	SRCT2 Full Trigger = IT & (XI & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	o	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 1x10 ⁴⁵ beam duration 3 sec, Live time:~100%, #N:18kEvents, decrease the TODC threshold for new BC4 to 10.

<u>1</u> 2 3 4 5 6 7 8 9 10 11 ... 106 > >>

<u>1</u> 2 3 4 5 6 7 8 9 10 11 ... 106 > >>

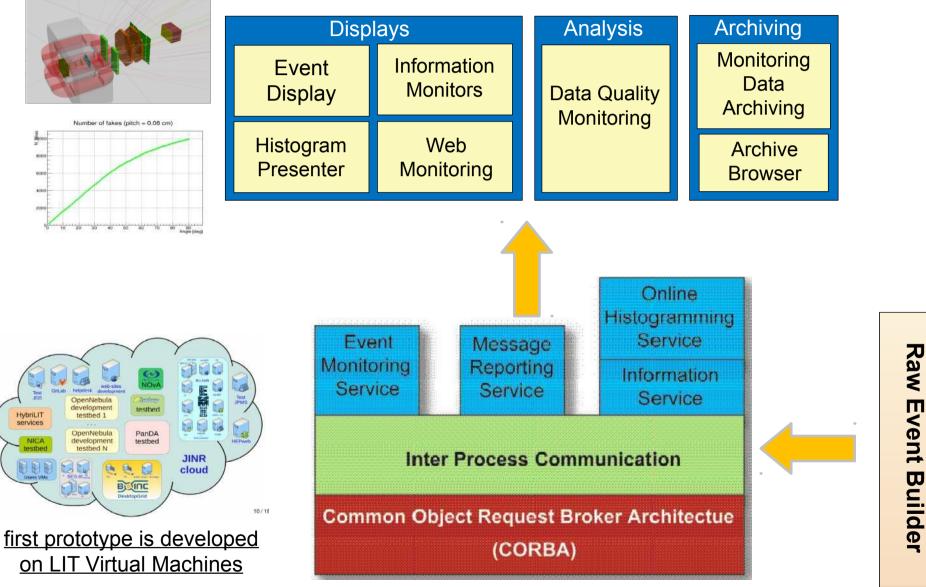
2018 - software team (contact e-mail: gertsen@jinr.ru)

Event generators \rightarrow exp. data databases

Protected: Simulation DB

Recent data on Wednesday 5th of October 2016 | Report mistake

Gen	Beam1	Beam2	Energy	Trigger	Path	Descr
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab 10AGeV/AuAu elb10gev hydroON EoS2PT urgmdON 6fm 1000ev 22.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_23.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_24.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_25.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_26.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_27.roo	c
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_28.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_29.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_2.root	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_30.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_31.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_32.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_33.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_34.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_35.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_36.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_37.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_38.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_39.roo	
3FD	Au	Au	10	mb	/nica/data4mpd1/3FD/hydro/2PT/elab_10AGeV/AuAu_elb10gev_hydroON_EoS2PT_urqmdON_6fm_1000ev_3.root	

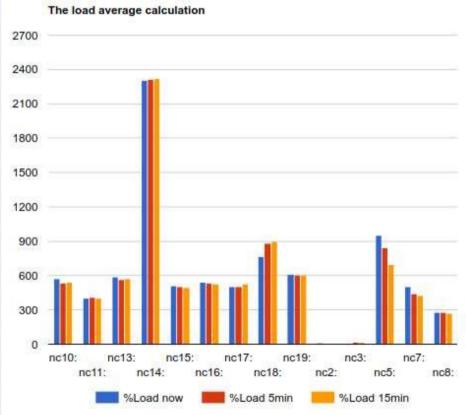

UrQMDQGSMPHSD

Hybrid UrQMD
vHLLE_UrQMD
3FD(Theseus)

32902 files ~ 10⁶ events for each interaction

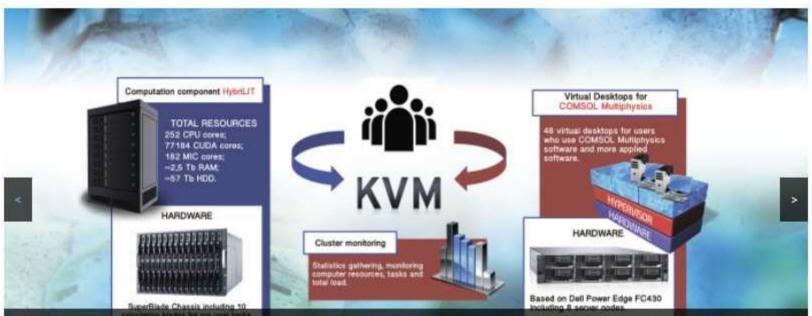
Edit table

MPD Run Control System


ATLAS TDAQ Online Components

Computing resources: LHEP

Protected: Cluster monitoring


ONLINE cluster nodes

Node	%Load now	%Load 5min	%Load 15min	Users	Uptime(days)	Time
nc10:	585	535	540	7	9	14:30:51
nc11:	<mark>4</mark> 07	407	405	0	44	14:30:45
nc13:	600	570	572	0	34	14:33:02
nc14:	2302	2312	2321	0	44	14:30:45
nc15:	500	500	495	0	15	14:29:45
nc16:	552	531	525	1	15	14:30:04
nc17:	506	502	523	0	41	14:30:45
nc18:	774	891	901	1	27	14:30:03
nc19:	607	606	600	1	42	14:30:45
nc2:	1	2	5	4	9	14:29: <mark>5</mark> 3
nc3:	5	19	17	9	27	14:28: <mark>2</mark> 3
nc5:	956	838	696	2	35	14:26:38
nc7:	424	422	417	1	51	14:25:54
nc8:	285	277	271	11	15	14:30:19

Computing resources: LIT

Гетерогенный кластер «HybriLIT»

Heterogeneous computing cluster HybriL T. HybriLIT is a unique thing in the multifunctional center for data storage, processing and analysis of LIT JINR. Heterogeneous structure of the cluster HybriLIT allows carrying out computations with the use of various parallel programming technologies such as MPI, CUDA, OpenMP, OpenCL.

Гетерогенный кластер «HybriLIT» является частью Многофункционального информационно-вычислительного комплекса (МИВК), Лаборатории информационных технологий ОИЯИ, г. Дубна. Гетерогенная структура вычислительных узлов позволяет разрабатывать параллельные приложения для решения широкого круга математических ресурсоемких задач с использованием всех возможностей многоядерной компоненты и ускорителей вычислений: графических процессоров NVIDIA и сопроцессоров Intel Xeon Phi.

Thank for your attention

