

Architecture and Performance of COMPASS DAQ,

future plans and possibility to adapt the system to other experiments

Igor Konorov

Dubna January 15-th

Short Introduction

Classical triggered DAQ

Pipeline Front-End

- 1. Trigger -> Copy data to Multi Event Buffer with speed 40-120 MB/s/ch => 20 TB/s
- 2. Multi Event Buffer or derandomization => average Trigger rate 30kHz => reduction 1000
- 3. Zero suppression => reduction 20 => 1GB/s => ...

IIII Event builder => recover Mosaic Image

Event Building

Dubna, JINR, January 15-th

COMPASS Experiment

ТШП

COMPASS

Micro pattern detectors

- Silicon Detectors
- GEM, PGEM, PMM

Scintillating Detectors

- SciFi, BMS, Hodoscopes, CAMERA

Wire Chambers

- DC, Straw, W45
- $\ \mathsf{MWPC}, \mathsf{RW}, \mathsf{MW1}, \mathsf{MW2}$
- DC05

Calorimeters

- HCAL1,2
- ECAL 0,1,2

RICH

- MAPMT
- MWPC, THGEM

- 300k detector channels
- ~2 k FE cards
- 100 Data Concentrators transmit data via optical HOLA Slink interface
 - GESICA
 - HGESICA
 - CATCH
 - SlinkMX
- Trigger Control System (TCS) distributes TRIGGERS, EVENT HEADERS
- Up to 40 kHz trigger rate capability
- 1.5 GB/s data rate within spill => up to 500MB/s sustained

Event Building

FRONT-ENDS

Dubna, JINR, January 15-th

13

Front-End and DAQ Electronics

Detector type	# of channels	Read out electronics	Location
Calorimeters ECAL0, ECAL2	4.800	12b ADC@80MHz	VME Crate
Calorimeters HCALs, ECAL1	2.200	10b ADC@80MHz	VME Crate
Silicon, GEM, PGEM, PMM	~100.000	APV25 ASIC	Detector
RICH, MWPC	60.000	APV25 ASIC	Detector
RICH, MAPMT	12.000	F1 TDC	Detector
SciFi	~2.600 ?	F1 TDC GANDALF(FPGA)TDC	VME Crate
Beam Momentum Station	640	F1 TDC	VME Crate
Hodoscopes, VETO	500	F1 TDC	VME Crate
Wire Chambers	~60.000	F1+FPGA TDC	Detector
Recoil Detector	96	14b <u>ADC@0.5(1.0)GHz</u> GANDALF	VXI Crate

APV Read Out

Silicon

Dubna, JINR, January 15-th

Silicon and GEM Performance

Sampling ADC

12b@80MHz, 64 channels

Programmable number of samples, tipcle 32 40MB/s limited bandwidth

iFDAQ intelligent FPGA-based DAQ

iFDAQ Architecture

Dubna, JINR, January 15-th

ЛШ

Data Handling Card

MC standard rtex6 XC6VLX130T GB DDR3 SDRAM
rtex6 XC6VLX130T GB DDR3 SDRAM
GB DDR3 SDRAM
DHCmx 12:1 multiplexer [1] DHCsw 8x8-switch
Absolute limit

VME carrier card

o form factor:	6 U VME
○ interfaces:	 TCS (Trigger Control System) receiver 1 Gb Ethernet for control network (IPbus) 16 serial data links (SLINK) JTAG for backup programming of FLASH

DHCmx Firmware

DHCsw Firmware

ТШ

iFDAQ

Hardware Event Builder

ТЛП

Downtime in 2017

Dubna, JINR, January 15-th

New Developments

Limits of Current System

F1 TDC Limitations

- Trigger latency 2us
- Trigger rate 40-50kHz
- No further improvements possible
- Plan : partial or complete substitute of F1

APV25 : Silicon, Gem, PGEM, PMM, RICH

- Trigger latency 4 us
- Trigger rate 40kHz by interface bandwidth, absolute maximum 90kHz

Plan : upgrade to 90kHz or development of trigger less readout

Limits of Current System : SADC and MSADC

HCAL1, HCAL2, ECAL1 – SADC 10bit 80MSPS

- Highly inefficient zero suppression algorithm
- One channel provides 32 samples or 44 bytes of data
- Trigger latency 5us
- 100 kHz @10% occupancy

ECAL0, ECAL2 – MSADC 12bit 80MSPS

- One channel provides 32 samples or 68 bytes of data
- Trigger latency 5 us
- Maximum trigger rate limited by interface bandwidth of 20MB/s/64 channels
- 45 kHz @10% occupancy
- Plan :
 - Implement feature extraction algorithm and transmit Amplitude and Time => 4 Bytes/channel
 - Develop new carrier card to convert MSADC to trigger less capable

TUTT

Trigger Logic

NIM logical modules Programmable, analogue coincidence matrixe for target pointing trigger Very simple trigger functions Limited programmable features Limited debugging capabilities

Plan :

Employ FPGA based trigger processor

New Developments

UCF (Unified Communication Framework)

- Universal protocol for all types of communications between FPGAs
- Single link for trigger, slow control(IPBUS) and data
- Supports different topologies : point-to-point and start like

FPGA TDC - iFTDC

Digital Trigger Processor

- Process TDC information instead of analogue information
- Provision of AND, OR, VETO processor units
- Build entire trigger logic out of these units within FPGA

Feature extraction algorithm for calorimeters

Develop FIR filter to extract TIME and AMPLITUDE down to SNR = 4

Develop trigger less FEEs and DAQ for future COMPASS like experiment

Dubna, JINR, January 15-th

ТЛП

iFTDC

Features

- ARTIX7 FPGA
- 64 TDC channels
- Bin size : 1 ns, 0.6 ns, 0.3 ns (32 channels)
- Time resolution : 300ps, 200 ps, 100 ps
- PCB exists for MWPC, DC00-DC04
- TDC price ~5 Euro/channel
- It's planned to use the module for CEDAR in 2018
- Unified interfaces
 - UCF to TDC MUX 2.5 Gbps , triggered data
 - UCF to Trigger processor, trigger less data

Requirements for new FEE :

- two high speed serial links
- UCF protocol for integration to DAQ
- TUM will provide UCF ip cores

Flexibility of COMPASS DAQ

In order to use COMPASS DAQ one has to comply to the following interfaces :

Slow Control :

- Ethernet udp based protocol

Time distribution system (TCS) :

- Time precision 40ps, further improvements shall be implemented in FEE
- Accepts NIM inputs, will be compatible with FPGA Trigger Processor

FEE-DAQ interface: UCF interface

DAQ Capability :

- 10 GB/s sustained
- Triggered and Trigger less data flow

THANK YOU

Dubna, JINR, January 15-th

32